21 research outputs found

    Distributed detection and estimation in wireless sensor networks: resource allocation, fusion rules, and network security

    Get PDF
    This thesis addresses the problem of detection of an unknown binary event. In particular, we consider centralized detection, distributed detection, and network security in wireless sensor networks (WSNs). The communication links among SNs are subject to limited SN transmit power, limited bandwidth (BW), and are modeled as orthogonal channels with path loss, flat fading and additive white Gaussian noise (AWGN). We propose algorithms for resource allocations, fusion rules, and network security. In the first part of this thesis, we consider the centralized detection and calculate the optimal transmit power allocation and the optimal number of quantization bits for each SN. The resource allocation is performed at the fusion center (FC) and it is referred as a centralized approach. We also propose a novel fully distributeddistributed algorithm to address this resource allocation problem. What makes this scheme attractive is that the SNs share with their neighbors just their individual transmit power at the current states. Finally, the optimal soft fusion rule at the FC is derived. But as this rule requires a-priori knowledge that is difficult to attain in practice, suboptimal fusion rules are proposed that are realizable in practice. The second part considers a fully distributed detection framework and we propose a two-step distributed quantized fusion rule algorithm where in the first step the SNs collaborate with their neighbors through error-free, orthogonal channels. In the second step, local 1-bit decisions generated in the first step are shared among neighbors to yield a consensus. A binary hypothesis testing is performed at any arbitrary SN to optimally declare the global decision. Simulations show that our proposed quantized two-step distributed detection algorithm approaches the performance of the unquantized centralized (with a FC) detector and its power consumption is shown to be 50% less than the existing (unquantized) conventional algorithm. Finally, we analyze the detection performance of under-attack WSNs and derive attacking and defense strategies from both the Attacker and the FC perspective. We re-cast the problem as a minimax game between the FC and Attacker and show that the Nash Equilibrium (NE) exists. We also propose a new non-complex and efficient reputation-based scheme to identify these compromised SNs. Based on this reputation metric, we propose a novel FC weight computation strategy ensuring that the weights for the identified compromised SNs are likely to be decreased. In this way, the FC decides how much a SN should contribute to its final decision. We show that this strategy outperforms the existing schemes

    Optimal quantization and power allocation for energy-based distributed sensor detection

    Get PDF
    We consider the decentralized detection of an unknown deterministic signal in a spatially uncorrelated distributed wireless sensor network. N samples from the signal of interest are gathered by each of the M spatially distributed sensors, and the energy is estimated by each sensor. The sensors send their quantized information over orthogonal channels to the fusion center (FC) which linearly combines them and makes a final decision. We show how by maximizing the modified deflection coefficient we can calculate the optimal transmit power allocation for each sensor and the optimal number of quantization bits to match the channel capacity

    Distributed binary event detection under data-falsification and energy-bandwidth limitation

    Get PDF
    We address the problem of centralized detection of a binary event in the presence of falsifiable sensor nodes (SNs) (i.e., controlled by an attacker) for a bandwidth-constrained under-attack spatially uncorrelated distributed wireless sensor network (WSN). The SNs send their quantized test statistics over orthogonal channels to the fusion center (FC), which linearly combines them to reach a final decision. First (considering that the FC and the attacker do not act strategically), we derive (i) the FC optimal weight combining; (ii) the optimal SN to FC transmit power, and (iii) the test statistic quantization bits that maximize the probability of detection (Pd). We also derive an expression for the attacker strategy that causes the maximum possible FC degradation. But in these expressions, both the optimum FC strategy and the attacker strategy require

    Decentralized Federated Learning on the Edge over Wireless Mesh Networks

    Full text link
    The rapid growth of Internet of Things (IoT) devices has generated vast amounts of data, leading to the emergence of federated learning as a novel distributed machine learning paradigm. Federated learning enables model training at the edge, leveraging the processing capacity of edge devices while preserving privacy and mitigating data transfer bottlenecks. However, the conventional centralized federated learning architecture suffers from a single point of failure and susceptibility to malicious attacks. In this study, we delve into an alternative approach called decentralized federated learning (DFL) conducted over a wireless mesh network as the communication backbone. We perform a comprehensive network performance analysis using stochastic geometry theory and physical interference models, offering fresh insights into the convergence analysis of DFL. Additionally, we conduct system simulations to assess the proposed decentralized architecture under various network parameters and different aggregator methods such as FedAvg, Krum and Median methods. Our model is trained on the widely recognized EMNIST dataset for benchmarking handwritten digit classification. To minimize the model's size at the edge and reduce communication overhead, we employ a cutting-edge compression technique based on genetic algorithms. Our simulation results reveal that the compressed decentralized architecture achieves performance comparable to the baseline centralized architecture and traditional DFL in terms of accuracy and average loss for our classification task. Moreover, it significantly reduces the size of shared models over the wireless channel by compressing participants' local model sizes to nearly half of their original size compared to the baselines, effectively reducing complexity and communication overhead

    FLCC: Efficient Distributed Federated Learning on IoMT over CSMA/CA

    Full text link
    Federated Learning (FL) has emerged as a promising approach for privacy preservation, allowing sharing of the model parameters between users and the cloud server rather than the raw local data. FL approaches have been adopted as a cornerstone of distributed machine learning (ML) to solve several complex use cases. FL presents an interesting interplay between communication and ML performance when implemented over distributed wireless nodes. Both the dynamics of networking and learning play an important role. In this article, we investigate the performance of FL on an application that might be used to improve a remote healthcare system over ad hoc networks which employ CSMA/CA to schedule its transmissions. Our FL over CSMA/CA (FLCC) model is designed to eliminate untrusted devices and harness frequency reuse and spatial clustering techniques to improve the throughput required for coordinating a distributed implementation of FL in the wireless network. In our proposed model, frequency allocation is performed on the basis of spatial clustering performed using virtual cells. Each cell assigns a FL server and dedicated carrier frequencies to exchange the updated model's parameters within the cell. We present two metrics to evaluate the network performance: 1) probability of successful transmission while minimizing the interference, and 2) performance of distributed FL model in terms of accuracy and loss while considering the networking dynamics. We benchmark the proposed approach using a well-known MNIST dataset for performance evaluation. We demonstrate that the proposed approach outperforms the baseline FL algorithms in terms of explicitly defining the chosen users' criteria and achieving high accuracy in a robust network

    A Weft Knit Data Glove

    Get PDF
    Rehabilitation of stoke survivors can be expedited by employing an exoskeleton. The exercises are designed such that both hands move in synergy. In this regard often motion capture data from the healthy hand is used to derive control behaviour for the exoskeleton. Therefore, data gloves can provide a low-cost solution for the motion capture of the joints in the hand. However, current data gloves are bulky, inaccurate or inconsistent. These disadvantages are inherited because the conventional design of a glove involves an external attachment that degrades overtime and causes inaccuracies. This paper presents a weft knit data glove whose sensors and support structure are manufactured in the same fabrication process thus removing the need for an external attachment. The glove is made by knitting multifilament conductive yarn and an elastomeric yarn using WholeGarment technology. Furthermore, we present a detailed electromechanical model of the sensors alongside its experimental validation. Additionally, the reliability of the glove is verified experimentally. Lastly, machine learning algorithms are implemented for classifying the posture of hand on the basis of sensor data histograms

    Fine Timing and Frequency Synchronization for MIMO-OFDM: An Extreme Learning Approach

    Full text link
    Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is a key technology component in the evolution towards cognitive radio (CR) in next-generation communication in which the accuracy of timing and frequency synchronization significantly impacts the overall system performance. In this paper, we propose a novel scheme leveraging extreme learning machine (ELM) to achieve high-precision synchronization. Specifically, exploiting the preamble signals with synchronization offsets, two ELMs are incorporated into a traditional MIMO-OFDM system to estimate both the residual symbol timing offset (RSTO) and the residual carrier frequency offset (RCFO). The simulation results show that the performance of the proposed ELM-based synchronization scheme is superior to the traditional method under both additive white Gaussian noise (AWGN) and frequency selective fading channels. Furthermore, comparing with the existing machine learning based techniques, the proposed method shows outstanding performance without the requirement of perfect channel state information (CSI) and prohibitive computational complexity. Finally, the proposed method is robust in terms of the choice of channel parameters (e.g., number of paths) and also in terms of "generalization ability" from a machine learning standpoint.Comment: 13 pages, 12 figures, has been accepted for publication in IEEE Transactions on Cognitive Communications and Networkin

    Robotic Mobility Diversity Algorithm with Continuous Search Space

    Get PDF
    Small scale fading makes the wireless channel gain vary significantly over small distances and in the context of classical communication systems it can be detrimental to performance. But in the context of mobile robot (MR) wireless communications, we can take advantage of the fading using a mobility diversity algorithm (MDA) to deliberately locate the MR at a point where the channel gain is high. There are two classes of MDAs. In the first class, the MR explores various points, stops at each one to collect channel measurements and then locates the best position to establish communications. In the second class the MR moves, without stopping, along a continuous path while collecting channel measurements and then stops at the end of the path. It determines the best point to establish communications. Until now, the shape of the continuous path for such MDAs has been arbitrarily selected and currently there is no method to optimize it. In this paper, we propose a method to optimize such a path. Simulation results show that such optimized paths provide the MDAs with an increased performance, enabling them to experience higher channel gains while using less mechanical energy for the MR motion
    corecore